In situ transduction of target cells on solid surfaces by immobilized viral vectors
نویسندگان
چکیده
BACKGROUND For both in vitro and in vivo gene transfer applications, recombinant viral vectors have almost always been used free in solution. Some site-specificity of the delivery of viral vectors can be achieved by applying a solution containing viral particles specifically to the site of interest. However, such site-specificity is seriously limited since viral vectors can diffuse freely in solution after application. RESULTS We have developed a novel strategy for in situ transduction of target cells on solid surfaces by viral vectors. In this strategy, adenoviral vectors are attached stably to solid surfaces by using the extremely tight interaction between (strept)avidin and biotin, while maintaining the infectivity of the viral vectors. Target cells are cultured directly on such virus-coated solid surfaces, resulting in the transduction of the cells, in situ, on the solid surface. When compared using an equal number of viral particles present in each well (either immobilized or free), the efficiencies of such in situ transduction on solid surfaces were equivalent to those seen with the adenoviral vectors used free in solution. Since viral particles can be attached at desired locations on solid surfaces in any sizes, shapes, and patterns, the ultimate spatial arrangements of transduced cells on solid surfaces can be predetermined at the time of the preparation of the virus-coated solid surfaces. CONCLUSIONS We have devised a method of immobilizing adenoviral vectors, tightly and stably, on solid surfaces, while maintaining their ability to infect cells. Such immobilized viral vectors can infect target cells, in situ, on solid surfaces. This strategy should be very useful for the development of a variety of both in vitro and in vivo applications, including the creation of cell-based expression arrays for proteomics and drug discovery and highly site-specific delivery of transgenes for gene therapy and tissue engineering.
منابع مشابه
Gene Delivery to Mesenchymal Stem Cells
There is increasing trend in using recombinant stem cells as novel therapeutic candidates in different diseases. These studies encompass different applications from targeted homing of Mesenchymal Stromal (stem) Cells (MSC), to arming them with different cytokines. Resistance to transfection or transduction methods had urged researchers to look for better gene delivery alternates and optimizing ...
متن کاملنگاهی به ژن درمانی، پیشرفتهای اخیر و چشم انداز آینده
Human gene therapy has attracted increasing attention as a highly encouraging therapeutic approach to treat wide variety of diseases, other than genetically inherited and monogenic disorders. This approach entails the introduction and expression of a variety of nucleic acids into human target cells for therapeutic purposes. In this article, we review the history, highlights, recently progresses...
متن کاملHIV-Derived Lentiviral Vectors: Current Progress toward Gene Therapy and DNA Vaccination
Lentiviral vectors are promising gene delivery tools capable of transducing a variety of dividing and non-dividing cells, including pluripotent stem cells which are refractory for transduction by murine retroviruses. Although there is a growing debate on the safety of lentiviral vectors for gene transfer, in particular for those derived from human immunodeficiency viruses, type one (HIV-1) and ...
متن کاملBarriers and recent advances in non-viral vectors targeting the lungs for cystic fibrosis gene therapy
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in CFTR genes that affect chloride ion channel. The CF is a good nominee for gene therapy as the asymptomatic carriers are phenotypically normal, and the desired cells are accessible for vector delivery. Gene therapy shows promising effects involving the correction of gene or replacement of the mutant gene with the func...
متن کاملApoptotic effect of apoptin gene transduction on multiple myeloma cell line
Introduction: Following the first description of multiple myeloma (MM), as the second most prevalent hematologic malignancy, multiple promising advances have paved the way to increase the long-lasting complete remission for patients. In the era of the novel therapeutic approaches, the cloning of the apoptosis-inducing genes into the genome of malignant cells has attracted tremendous attention. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Biotechnology
دوره 3 شماره
صفحات -
تاریخ انتشار 2003